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Abstract. A new non-linear evolution equation is derived in the continuum limit of a 
dispersive non-linear transmission line. Since this equation has a similar structure to the 
Boussinesq equation, but with the non-linear term of higher-order derivatives, it can be 
called the derivative Boussinesq equation. This equation bears a cusp soliton. A solution 
for the voltage signal exhibits a shock-wave front. The asymptotic behaviour of this equation 
is related to the non-linear Schrodinger equation by the reductive perturbation method. 
Its solitary wave solution is expressed in terms of the bright-envelope soliton. Hence, the 
non-linear transmission line proposed in the present paper describes the density depression, 
the collisionless shock wave in plasmas and the modulation instability of the asymptotic 
wave propagating in this line. 

1. Introduction 

Non-linear waves in different branches of physics have been investigated in detail 
through theory and experiments. In particular, since the study of the non-linear 
transmission line, which has primarily interested us, was pioneered by Hirota and 
Suzuki (1970), various kinds of non-linear wave propagation have been discussed 
(Yagi and Noguchi 1976, Yagi et a1 1978, Nagashima 1979, Yoshinaga and Kakutani 
1980, Brugarino and Pantano 1983, Watanabe 1984, Nejoh 1985). Amongst these 
studies, studies on non-linear waves in plasmas have been performed by Lonngren et 
a1 (1975), Kiyashko er a1 (1975) and Nejoh (1985). In the conventional study, the 
solitary wave pulses have been experimentally observed by considering the non-linear 
capacitor parallel to the shunt branch of the line. In such transmission lines, however, 
we cannot discuss the higher-order non-linear interaction in strong dispersive media. 

The principal object of this paper is to show analytically the stationary solutions 
and the asymptotic solution of the new non-linear evolution equation, and to discuss 
the comparison between the waves propagating in this system and the ion acoustic 
waves in collisionless plasmas, by referring to a new non-linear transmission line as a 
lossless physical system with a new non-linear interaction in strong dispersive media. 
The non-linear transmission line introduced in this paper is different from that which 
Lonngren et a1 treated, in the following sense. That is, we introduce the non-linear 
capacitor parallel to the series branch and also consider the higher-order dispersion 
effect. The non-linear transmission line gives rise to a new non-linear evolution equation 
from its conservation laws. The non-linear equation derived is similar to the Boussinesq 
equation ( 1877), but the non-linear term is characterised by the higher-order derivatives 
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compared with those of the Boussinesq equation. This equation is not only a mathemati- 
cal model for a system in which the higher-order derivative non-linearity and  the strong 
dispersion coexist, but is very important in physical systems. We analyse the stationary 
solution of this equation and  determine the solution for the voltage signal propagating 
through this transmission line. The asymptotic solution and  its instability in this new 
equation can be described by the reductive perturbation method (Taniuti 1974). 

The layout of this paper is as follows. The conservation laws of the non-linear 
transmission line give rise to a new non-linear evolution equation in the continuum 
limit ( 9  2 ) .  A new stationary solitary wave solution of this equation and the solution 
for the voltage signal are analysed in § 3. The derivation of the non-linear Schrodinger 
equation and  its modulational instability are presented in 9 4. The comparison between 
the transmission line and  the ion acoustic wave in collisionless plasmas is shown in 
9 5 .  Results concerning this work are given in 9 6 .  The last section is devoted to the 
concluding discussion. 

2. A new non-linear evolution equation 

Let us consider the dispersive non-linear transmission line shown in figure 1. At the 
nth section, we obtain the conservation laws of the current and the charge as follows: 

(a/at)C,V,, = Zn-, - I , ,  ( l a )  

L(a/at)Z:, = v,, - v,+, (1b)  

( a / a t ) Q , (  V, - V,+d = I,, - I : ,  (IC) 

Q l ( v n -  V, , , )  = ( V ,  - Vn+I)Cl( v n  - V,+l) ( I d )  
where V, denotes the voltage across the nth capacitor C 2 ,  C2 is the constant capacitance 
parallel to the shunt branch, C,( V,, - V,,,,) is the capacitance parallel to the series 
branch, I,, is the total line current through the nth section and I ;  is the current through 
the coil whose inductance is L. A section size of the line is assumed to be h. We 
introduce the non-linearity into the capacitor C,( V,, - V,,+,) parallel to the series branch 
and  consider the dispersion in both capacitors C,( V,, - V,, , , )  and C2 in the line, which 
is different from Lonngren’s transmission line. We assume that the non-linear capacit- 
ance C,( V,, - V, ,+ , )  depends on the input voltage V,, - Vn+,  for the nth capacitor in 

- - - -. - - 
n n + l  

Figure 1. The nth and ( n +  1)th sections of a non-linear transmission line model, 
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the series branch in the line. The stored charge in the nth non-linear capacitor is 
expressed in terms of equation ( I d ) .  In addition, we assume the logarithmic non- 
linearity for the capacitance C,( V,, - V,,,,) to be 

where CI and Vo take constant values. In this model the non-linear function of the 
bias and signal voltages across the series branch can be described by using a reverse 
biased pn junction diode for the capacitors. Eliminating the currents from equations 
( l a ) - (  I d )  and (2) ,  we obtain a non-linear differential difference equation: 

The first two terms of the left-hand side of equation (3)  represent the linear characteris- 
tics of the line. When we approximate the logarithmic non-linearity by its expansion 
up to the second term as follows: 

log[1+ ( Vn - Vn+l)/ vOI = ( Vn - Vn+i)/ Vo-%C Vn - Vn+l)/ VOI’ (4) 

we can reduce equation (4) in the continuum limit to the following equation: 

Equation ( 5 )  is valid under the condition of I U1 < 1. The variables T and X are defined 
by 

T = t/(LC,)”’ (6a) 

X = x / h  (66) 

and the function U is defined by 

1 av 
v0 ax U=-- ,  

Combining equations ( 5 )  and (6c), we discuss the stationary solutions in the next 
section. 

3. Stationary solutions 

Introducing a moving coordinate 6 with velocity s as follows: 

~ = X - S T  (7 )  
we seek a stationary solution of equation ( 5 )  under the boundary conditions of 

u+o a” U/ag” + 0 

with n = 1 and 2 at 161 + 00. After applying the transformation of equation (7) ,  we carry 
out the integration of equation ( 5 )  twice to obtain 

(d2/d6’ ) (bU+~U2)-aU = O  (8) 
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where the constants a, 6 and c are defined as 
(9a) 

6 =A+ (C,/ C2)s2 (96) 
c = 5( c,/ C2)S2. (9c) 

We notice that the constants 6 and c are positive, while the sign of the constant a can 
be positive or negative, depending on whether the wave is supersonic or subsonic. 

Multiplying d( 6U + cU2)/dg on both sides of equation (8), we integrate to obtain 

In order to enswe that the right-hand side of equation (10) is positive under the 
condition of I U (  < 1, the constant a must be positive. Thus only the supersonic wave 
can propagate as a stationary signal. Equation (10) is reduced to the following 
differential expression: 

2 a = s  -1 

; [ (d/dt)(bU+ CU’)]~  =ia6U2+$acU3. (10) 

6+2cU 
*“ = :( i) [ U’( U + 36/4c)]‘/’ 

Here the factor b+2cU is a positive quantity under the condition of I U /  < 1. An 
elementary integration of equation (1 1 )  yields 
*f(~1/6)’ /~(5-50)  = $ tanh-’[l+ (4cU/36)((-  50)]1/2 -[1+ (4cU/36)(5- (0)31’2 

(12) 
in the region -a < 6 < +a, where U, is the height of the solitary wave at the centre 
(+to. In figure 2, we illustrate the stationary solitary wave solution U ( ( - [ , )  given 
by equation (12) for several values of the parameter U,. 

Next, returning to the definition of U given in equation (6c), we determine the 
voltage V at a distance X .  The integration of (6c) yields for the dimensionless 
voltage Zr 

- $  tanh-’( 1 + 4 ~ U , / 3 6 ) ’ / ~  + ( 1  + 4 ~ U , / 3 6 ) ’ / ~  

t 
-0.71 , ,  , , , , , , , I , ,  , , , , , , , I 

Figure 2. The cusp solitons (4c/3b) U ( 6 -  to) against the coordinate i ( a / b ) ’ ” ( t -  to) for 
(4c/3b)U0=-3 ( - - - ) ;  for (4c /3b)Uo=- i  (-), and for (4c /3b)U0=-f  (---). 
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where ( - 1 )  denotes the region where -00<5<0 and (+1) denotes the region where 
0 < 6 < +CO. Thus we obtain 

in the region of -CO< [ < O ,  and 

in the region of 0 < 6 < +CO. In figure 3, we illustrate the voltage “lr( 5 - to) as a function 
of (t-&J determined from equations (14a) and (146) combined with equation (12) 
for several values of U,. 

0.2 0*31 
0.1 - 

I I I ‘ 1  ‘ 1  ‘ 1  ‘ 
-1.0 - 0.5 0 0.5 1.0 

Figure 3. The curves of the normalised voltage signal ( 2 ~ / 3 b ) ( b / a ) ” ~ ? r ( c - & , )  against 
the coordinatef(a/b)”*(l-c00) f o r ( 4 c / 3 b ) U o =  -3 (- - -);for ( 4 c / 3 b ) U 0 =  -f (-),and 
for ( 4 c / 3 b )  U, = -f (- - -), 

4. Asymptotic behaviour 

We analyse the asymptotic behaviour of the slowly varying finite-amplitude wave in 
the strong dispersive region of equation ( 5 )  by using the reductive perturbation method. 
We assume, according to the fundamental philosophy of this method, that the temporal 
asymptotic behaviour of the wave is slower than the spatial distortion of the wave and 
that the wave propagates at the group velocity. We introduce the stretched coordinates 
7 and 7, defined as 

T = E ’ T  ( 1 5 ~ )  

17 = E ( X  - AT)  (156) 
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where E is a small parameter and A is the group velocity aw/Jk. The complex function 
U normalised by Vo can be expanded in power series of E as follows: 

W 5 

U =  E "  2 ~ ( " ' ( 1 ,  T), 7) exp(il8) (16) 

where 6 = kx - wt and 1 refers to the higher-harmonic wave components. The complex 
function U'"'(  I )  satisfies the reality condition 

U'"'(1) = U'"'(-I)*.  (17)  

The asterisk denotes complex conjugation. Substituting equations (15a), (156) and 
(16) into the new non-linear evolution equation (5) and equating the coefficients of 
each order of E to zero, we get the zeroth-, first- and second-order sets of equations. 

n = O  I = - =  

We have the following linear dispersion relation for 1 = * 1 of the zero-order equation: 

= (18) 
k2( 1 - &k2) 

1+(Cl/C2)k2 
where w is normalised by (LC2)-'", because U(')(*l) is non-trivial. The 1 = *1 
components of the first-order equation give rise to the group velocity 

aw k (  1 - dk2) - ( C,/ C2)kw2 A =-= 
ak w[1+(CI/C2jk2] ' 

We obtain the non-linear Schrodinger equation for the 1 = 1 component of the second- 
order perturbation equation of E to be 

with the definition of 

1 k2 
2 w'[  1 + (C,/ C,) k2] 

p = - -  

and 

* = U'O)(l). (21c) 
Here the coefficients (21a) and (216) are abbreviated by the dispersion relation (18) 
and we have used the reality condition. Thus we notice that P < 0 and Q < 0 because 
L, C, , C 2 ,  k and w are all positive. We express the complex amplitude i,b( T), r )  of 
equation (20) in terms of 

and expand the real functions p and a as follows: 

When PQ > 0, the frequency shift R for the perturbations 6p and 6a takes the form 

R =[uOfi(2PQpo)]K. 
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Therefore, a plane-wave solution of equation (20) is modulationally unstable against 
the non-linear self-modulation of its amplitude and phase. By a brief calculation, we 
obtain the bright-envelope soliton solution 

+(q, T) = A sech[(QA2/2P)”*q] exp[i(+QA2)7] 

where A is the amplitude. However, we have no solution as obtained in the Korteweg- 
de Vries soliton in the long wavelength limit. 

5. Comparison between the line and the ion acoustic wave 

In this section we discuss the correspondence between the variables of the transmission 
line and the ion acoustic wave. We obtain the linear equation for the voltage from 
equation ( 5 )  in the continuum limit. For small amplitude signals of the form V-  
Vo exp[i(kx - w t ) ] ,  we can derive the dispersion relation (18). 

On the other hand, for one-dimensional ion acoustic waves travelling in a collision- 
less plasma composed of cold ions (T, = 0) and isothermal electrons, we neglect the 
effects of the Landau damping and the electron inertia. When we describe the behaviour 
of the plasma by the two-fluid model without dissipation, it is well known that the 
dispersion relation of the wave propagating in this system is written in terms of 

w z  = k 2 / (  1 + k’). (22) 

Here, w and k are normalised by wi = ( 4 ~ n , e ~ / M ) ” ~  and k ,  = ( 4 ~ n , e ~ / ~ T , ) ” ~ ,  respec- 
tively, where no,  M ,  K ,  e and T, denote the characteristic density, the ion mass, the 
Boltzmann constant, the electron charge and the electron temperature ( T ,  is assumed 
to be constant), respectively. 

From equations (18) and (22) we compare the parameter of the line with that of 
ion acoustic waves. The correspondence between the line and the plasma can be 
compiled as follows: 

Line Plasma 

V 
L 
1, 
I : ,  
h 2 /  C2 
1f c, 
1 f LC, = UJ; 

h 2 / L C 2 = v i  
( C , / C 2 ) h 2 = S 2  

Here wo = ( LC,)-”’,  uo = ( LC2)-1’2h and S = ( C , /  C2)’”h, and they are the cut-off 
frequency, the low-frequency velocity and the characteristic length, respectively. U, n e ,  
n i ,  wi, vr and A D  refer to the ion flow velocity, the electron density, the ion density, 
the ion plasma frequency, the characteristic ion acoustic velocity and the Debye length 
of the plasma, respectively. wi = ( 4 ~ n ~ e ’ / M ) ” ~ ,  vT= ( K T J M ) ” ’  and A D  = 
( ~ T , / 4 7 r n ~ e ~ ) ’ / ’ .  Therefore, the parameters of the line correspond to those of the 
plasma. However, the linear dispersion relation (18) of the line is markedly different 
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from that of the ion acoustic wave (22). Furthermore, we note that the reciprocal of 
the capacitance parallel to the series branch of the line corresponds to the ion plasma 
density. 

6. Results 

A new non-linear transmission line proposed in this paper gives rise to a new non-linear 
evolution equation ( 5 )  in the continuum limit when we assume the logarithmic non- 
linearity for the capacitance in the series branch and consider the dispersion in both 
capacitors C,( V, - V, , , )  and C, .  We note that the non-linear term of this equation 
is a new one which is characterised by higher-order derivatives compared with that of 
the Boussinesq equation. We obtain analytically a cusp solitary wave as its stationary 
solution for the supersonic wave of this equation as illustrated in figure 2. In addition, 
as shown in figure 3, a stationary solution for the normalised voltage signal exhibits 
a shock-wave propagation. Furthermore, the non-linear Schrodinger equation describes 
the asymptotic behaviour of a new non-linear evolution equation ( 5 )  in the strong 
dispersive region by the reductive perturbation method. When the product of the 
dispersion coefficient and the non-linear coupling coefficient of the non-linear Schrodin- 
ger equation is positive for any wavenumber, its plane-wave solution is always modula- 
tionally unstable against the non-linear self-modulation. Hence, in this case, the 
plane-wave solution is described by the bright-envelope soliton. 

The correspondence between the wave propagating in this line aild the ion acoustic 
wave in collisionless plasmas has been discussed in the preceding section. The disper- 
sion relation of this line (18) does not have one-to-one correspondence to that of the 
ion acoustic wave in plasmas ( 2 2 ) .  This is because for the former a term $k4 in its 
numerator gives rise to a stronger dispersion at short wavelengths than for the ion 
acoustic wave. However, one-to-one correspondence holds between parameters of 
these two systems. In particular, we must note that the correspondence shown in this 
paper differs greatly from the correspondence that Lonngren er a1 (1975) showed 
between their line and the plasma, in the sense that the reciprocal of the capacitance 
in the series branch of this line corresponds to the ion plasma density. 

7. Concluding discussion 

We discuss the results obtained in this investigation as follows. We have found a new 
non-linear evolution equation in the continuum limit referring to a new non-linear 
transmission line proposed in this paper. Since the non-linear term of this equation 
is characterised by a higher-order derivative compared with that of the Boussinesq 
equation, we call this the derivative Boussinesq equation. First we showed that the 
derivative Boussinesq equation bears a cusp soliton as its stationary solution. Since 
the dependence of the non-linear capacitor on the input voltage corresponds to the 
non-linear self-interaction of the ion plasma density on the basis of the correspondence 
between the parameters of the line and the electrostatic ion acoustic wave in plasmas, 
we have theoretically found that the cusp soliton in this paper explains the density 
depression of the ion acoustic wave. Moreover, we have determined the voltage signal 
propagating through this line. It takes the form of the collisionless ion acoustic 
shock-wave front. Hence we propose that these two results describe the non-linear 
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electrostatic ion acoustic shock-wave propagation in collisionless plasmas observed by 
Taylor et a1 (1970). Furthermore, it is also found that the asymptotic solution of the 
derivative Boussinesq equation can be expressed in terms of the bright-envelope soliton 
with modulational instability. Since the derivative Boussinesq equation is derived from 
the balance between a strongly dispersive term composed of four times differentiation 
and a new higher-order derivative non-linear term, the modulational instability of the 
asymptotic wave propagating in this line holds for all wavenumbers. Therefore, we 
cannot get such a solution as shown in the Korteweg-de Vries equation even in the 
limit of long wavelength. 

We therefore conclude as follows. A cusp soliton, a shock-like wave front and the 
bright-envelope soliton of the proposed non-linear transmission line describe the 
density depression, the shock wave of the electrostatic wave in collisionless plasmas 
and the asymptotic behaviour of the derivative Boussinesq equation in the strong 
dispersive region, respectively. In particular, we emphasise that investigations of the 
cusp solitons which have interested us as mathematical models (Wadati et a1 1980) 
will provide us with useful tools in understanding the properties of the physical system 
with higher-order derivative non-linear interaction in strong dispersive media. Since 
our analysis has been carried out for a new non-linear evolution equation, derived in 
the continuum limit, it would be worthwhile examining the analytical prediction 
described here in comparison with the experimental observation for the non-linear 
transmission line. The further application of the derivative Boussinesq equation to 
other physical systems is under investigation. 
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